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Outline

 Gravitational Waves
» Sources
» Detectors

 Searches for stochastic background of gravitational 
waves using LIGO data

 Outlook for the future:
» Advanced LIGO
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Gravitational Waves

 Newtonian gravity: instantaneous action at a distance.
 General Relativity: the “signal” travels at the speed of light.
 Weak field limit: 
 Einstein’s field equations reduce to the wave equation:

 Two polarizations:
a,b ~ f(ωt - k·x)
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Sources of Gravitational 
Waves

 Transient sources, typically 1-sec long (or less):
» Compact binary coalescences
» Bursts: transient emissions during Supernovae, GRBs…

 Continuous sources:
» Periodic sources: pulsars
» Stochastic sources: cosmological and astrophysical

 New search: long-lasting transients.
» Time-scale of minutes, hours, or days

 Unexpected?
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Compact Binary 
Coalescences

Inspiral

Merger

Ringdown

 Compact binary objects:
» Two neutron stars and/or black 

holes.
 Inspiral toward each other.

» Emit gravitational waves as they 
inspiral.

 Amplitude and frequency of the 
waves increases over time, until the 
merger.

 Waveform relatively well understood, 
matched template searches.

 Science:
» Strong field GR (BH-BH mergers).
» Equation of state in NS.
» Standard “sirens” -  probe 

cosmology.

R. Spero

5



    

Bursts

 Many potential transient sources:
» Supernovae: probe the explosion mechanisms.
» Gamma Ray Bursts: collapse of rapidly rotating 

massive stars or neutron star mergers.
» Pulsar glitches: accretion.
» Cosmic strings cusps.

 Models are ok, but not essential:
» Search for power excess in the data.
» Search for any short signal with measurable strain 

signal.

Aspherical  outflows

Anisotropic -flowsRotational 
instabilities

Convection

C. Ott 6



    

Sources: Periodic

 Pulsars with mass non-uniformity:
» Small “mountain”.
» Density non-uniformity.
» Dynamic processes inside neutron 

star, leading to various instabilities.
 Produce gravitational-waves at twice the 

rotational frequency.
 Waveform well understood:

» Sinusoidal, but Doppler-modulated.
 Continuous source!
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Sources: 
Stochastic Background

 Incoherent superposition of 
many unresolved sources.

 Cosmological:
» Inflationary epoch, 

preheating, reheating
» Phase transitions
» Cosmic strings
» Alternative cosmologies

 Astrophysical:
» Supernovae
» Magnetars
» Double neutron stars

 Potentially could probe 
physics of the very-early 
Universe. 8



    

Sources: Long Transients

 New category of sources, received 
much attention recently.
» Tens of seconds or longer.

 Long GRBs (Piro & Pfahl):
» In-falling material circularizes and 

falls into the black hole via an 
accretion disk.

» Strong cooling from helium 
photodisintegration leads to disk  
fragmentation, and GWs.

 Magnetars:
» ~10% of neutron stars, strong 

magnetic fields (1014 – 1016 G).
» B-field/accretion can induce tri-

axial deformation – GWs. 9
A. Pyro



    

 Gravitational wave effectively 
stretches one arm while 
compressing the other.

Time
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Interferometers as 
Gravitational Wave Detectors



    

 Gravitational wave effectively 
stretches one arm while 
compressing the other.

 Interferometer measures the arm-
length difference.
» Suspended mirrors act as 

“freely-falling”.
» Dark fringe at the detector.

Time

Interferometers as 
Gravitational Wave Detectors
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 Gravitational wave effectively 
stretches one arm while 
compressing the other.

 Interferometer measures the arm-
length difference.
» Suspended mirrors act as 

“freely-falling”.
» Dark fringe at the detector.

 Fabry-Perot cavities in the arms
» Effectively increase arm length 

~100 times.
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 Gravitational wave effectively 
stretches one arm while 
compressing the other.

 Interferometer measures the arm-
length difference.
» Suspended mirrors act as 

“freely-falling”.
» Dark fringe at the detector.

 Fabry-Perot cavities in the arms
» Effectively increase arm length 

~100 times.
 Power-recycling mirror

» Another factor of ~40 in power.

Time

Interferometers as 
Gravitational Wave Detectors
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Back-of-the-Envelope 
Sensitivity

 Rough sensitivity estimate
» Input laser power: ~5 Watt

 Sensitivity (ΔL) ~ λ (~ 10-6 m)
/ Number of Bounces in Arm (~100)
/ Sqrt(Number of Photons (~1021)) 

    ~ 3 × 10-19 m
 Strain Sensitivity:

» h = ΔL / L ~ 10-22

» L = 4 km 
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Network of Gravitational-Wave 
Detectors
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Sensitivity History

 Substantial sensitivity 
improvements:
» 5 orders of magnitude in ~5 

years.
 LIGO reached its design 

sensitivity in Nov. 2005.
 Science run at design sensitivity 

(S5) completed in Oct. 2007.
» 1 year of H1-L1-H2 

coincident time.
 Data analysis still ongoing.

» Several results published.

Milky Way, 
~50 kpc

Andromeda, 
~700 kpc

Virgo Cluster, 
~15 Mpc
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Enhanced LIGO
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 In 2007-2008, upgraded 4km 
detectors H1 and L1.
» More powerful laser.
» Seismically isolated output 

mode cleaner.
» New locking scheme.

 In 2009-2010, LIGO performed 
a new science run (S6) at 
improved strain sensitivity 
(Enhanced LIGO).
» Much of it in coincidence 

with Virgo and GEO 
experiments.



    

Stochastic Background of 
Gravitational Waves

 Energy density:

 Characterized by log-
frequency spectrum:

 Related to the strain power 
spectrum:

 Strain scale:
18



    

Detection Strategy
 Cross-correlation estimator

 Theoretical variance

 Optimal Filter

Overlap Reduction Function

For template:

Choose N such that:



    

S5 Result

 Use the entire S5 data-set.
» 292 days of effective observing 

time.
 S5 LHO-LLO  result: 

Ω0 ± σΩ = (2.1 ± 2.7) × 10-6

» H0 = 72 km/s/Mpc
 The frequency band is selected to 

include 99% of sensitivity, as measured 
by the integrand of σ-2.
» 41.5-169.25 Hz

 Bayesian 95% UL:
» Prior on Ω0: S4 Posterior
» Marginalize over calibration 

uncertainties

» 95% UL: 6.9 × 10-6

 Beginning to constrain models of 
stochastic GW background.

Abbott et al, Nature 460, 990 (2009)
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BBN and CMB 
Indirect Bounds

 Big-Bang Nucleosynthesis model and observations constrain the total 
energy at the time of BBN:

 Similar bound is derived from CMB observations.
 In the LIGO frequency band, this becomes:

» Ω0
BBN < 1.0 × 10-5

» Ω0
CMB < 9.5 × 10-6

 We have now surpassed these bounds.
» Important LIGO milestone!
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LIGO-Virgo 
High-Frequency Result

 Repeated a similar analysis at high 
frequencies: 600-900 Hz.

arXiv:1112.5004, to appear in PRD
 Data from LIGO S5 and Virgo 

VSR1 runs.
 Using all non-collocated LIGO-

Virgo detector pairs.
 Overlap reduction is substantial, 

but still produced most sensitive 
measurement in this frequency 
band.

     Ω0 < 0.16 (H1-H2-L1-V1)

All

LIGO only



    

Anisotropic Searches 

 Measure from where (on the sky) the signal comes from.
» Time-delay between two detectors.
» Earth rotation breaks degeneracies for permanent signals.

 Redefine energy density:

 Point source (radiometer) search:

 Spherical harmonic decomposition (similar to CMB analyses):
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Anisotropic Signal 
Simulations

Anisotropic stochastic signal added to the data (in software or 
hardware) and successfully recovered. 
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WMAP map added to data in software
E. Thrane et al, Phys. Rev. D 80, 122002 (2009).

Point source simulation in hardware
M. Pihlaja’s M.S. Thesis (2011).

Injected

Recovered



    

Anisotropic Searches with 
LIGO S5 Data
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SNR Map
Spherical Harmonics Search 
Template: ΩGW = const
Maximum SNR significance: 25%

SNR Map
Radiometer Search 
Template: strain = const
Maximum SNR significance: 53%

90% CL Upper Limit on Cl

LVC, Phys. Rev. Lett. 107, 271102 (2011).



    

Can also compute 90% CL upper limits on the strain from 
specific point-sources in the sky.
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Point-Source Searches with 
LIGO S5 Data

LVC, Phys. Rev. Lett. 107, 271102 (2011).
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Advanced Detector Era
 Network in 2015?
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Advanced LIGO
 Keep the same facilities, but redesign 

all subsystems.
» Improve sensitivity over the whole 

frequency range.
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Advanced LIGO
 Keep the same facilities, but redesign 

all subsystems.
» Improve sensitivity over the whole 

frequency range.
 Increase laser power in arms.
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Advanced LIGO
 Keep the same facilities, but redesign 

all subsystems.
» Improve sensitivity over the whole 

frequency range.
 Increase laser power in arms.
 Better seismic isolation.

» Quadruple pendula for each mass
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Advanced LIGO
 Keep the same facilities, but redesign 

all subsystems.
» Improve sensitivity over the whole 

frequency range.
 Increase laser power in arms.
 Better seismic isolation.

» Quadruple pendula for each mass
 Larger mirrors to suppress thermal 

noise.
 Silica wires to suppress suspension 

thermal noise.

31



    

Advanced LIGO
 Keep the same facilities, but redesign 

all subsystems.
» Improve sensitivity over the whole 

frequency range.
 Increase laser power in arms.
 Better seismic isolation.

» Quadruple pendula for each mass
 Larger mirrors to suppress thermal 

noise.
 Silica wires to suppress suspension 

thermal noise.
 “New” noise source due to increased 

laser power: radiation pressure noise.
 Signal recycling mirror

» Allows tuning sensitivity for a 
particular frequency range.
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Future of 
Stochastic Searches

 Second generation:
 Advanced LIGO/Virgo, 

GEO-HF, KAGRA.
 First data: 2014/2015.
 10x improvement in 

strain.
 Down to 10 Hz.
 Reaching Ω

0
 ~ 10-9.  

 Third generation:
 Einstein Telescope 

design study.
 Another 10x 

improvement in strain, 
down to few Hz.

 Reaching Ω
0
 ~ 10-12.  



    

Advanced Detectors and the 
Stochastic Background

 Standard inflationary 
models are weakly 
dependent on frequency.

 Out of reach of advanced 
detectors by ~5 orders of 
magnitude

34
Catalog of models: 
http://homepages.spa.umn.edu/~gwplotter/



    

 If inflation ends with a 
preheating resonant phase, 
inflaton energy is efficiently 
transferred to other 
particles.

 Can have significant 
increase in GW background.

 Peak depends on energy 
scale.

» Easther & Lim, JCAP 0604, 
010 (2006).

» Easther et al, PRL 99, 221301 
(2007).

» Easther, Nucl. Phys. Proc. 
Suppl. 194, 33 (2009).
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Advanced Detectors and the 
Stochastic Background

10 GeV
1013 GeV

Catalog of models: 
http://homepages.spa.umn.edu/~gwplotter/



    

 Axion-based inflation models 
include axion-gauge 
couplings.

 Gauge backreaction on the 
inflaton extends inflation.

 This late inflationary phase 
increases GW production at 
high frequencies.

» Barnaby et al, arXiv:1110.3327.
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Advanced Detectors and the 
Stochastic Background

Catalog of models: 
http://homepages.spa.umn.edu/~gwplotter/



    

 Cosmic (super)strings 
models: cusps or kinks 
moving at relativistic speeds 
produce bursts of 
gravitational radiation.

 Integrating over the whole 
universe leads to a GW 
background.

 Large parameter space, 
some of it already probed by 
initial LIGO.

» Damour & Vilenkin, PRL 85, 
3761 (2000).

» Siemens et al, PRL 98, 111101 
(2007). 

» Olmez et al, PRD 81, 104028 
(2010). 37

Advanced Detectors and the 
Stochastic Background

Catalog of models: 
http://homepages.spa.umn.edu/~gwplotter/



    

Systematic Study:
Cosmic (Super)Strings

 String cusps or links moving at the speed of light produce GW bursts.
 Integrating over the entire universe gives a stochastic background.
 Parameters (small-loop scenario):

» loop-size parametrized by: 10-13 < ε <1
» String tension: 10-12 < Gμ < 10-6

» Reconnection probability: 10-3 < p <1
Kinks: S. Olmez, V.M., X. Siemens, 
PRD81, 104028 (2010).

Cusps: X. Siemens, V.M., J. 
Creighton, PRL98, 111101 (2007).

p = 10-3



    

 Alternative cosmologies, 
such as pre-Big-Bang 
models, can lead to strong 
GW backgrounds at high 
frequencies.  

» Gasperini & Veneziano, Phys. 
Rep. 373, 1 (2003).

» Buonanno et al, PRD 55, 3330 
(1997).
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Advanced Detectors and the 
Stochastic Background

Catalog of models: 
http://homepages.spa.umn.edu/~gwplotter/



    

 Individual neutron star and/or 
black hole pairs generate 
chirp GW signals. 

 Integrating over the whole 
universe (z<6) leads to a GW 
background.

 Peak in the LIGO band.
» Phinney, ApJ 380, L17 (1991).
» Ignatiev et al., MNRAS 327, 531 

(2001).
» Regimbau & de Freitas Pacheco, 

ApJ 642, 455 (2006).
» Wu et al, arXiv:1112.1898.
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Advanced Detectors and the 
Stochastic Background

Catalog of models: 
http://homepages.spa.umn.edu/~gwplotter/



Binary Coalescences: Model

41

Energy Density:

Rate of Binaries:

CosmologyMass Fraction 
Parameter

Star Formation Rate

Time delay between 
formation and coalescence

Energy emitted by 
a single binary:



Binary Coalescences: Model
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• This model has been around for >20 
years: 

• Phinney, ApJ 380, L17 (1991).
• Many papers, multiple authors, 

different tweaks.
• Wu, Mandic, Regimbau, 

arXiv:1112.1898, to appear in PRD: 
– Systematic study of the 

accessibility of the model to 
Advanced detectors.

– Scan λ-Mc parameter space.

– Different star-formation rates. 
– Different time-delays.

Population synthesis: P(t) ~ tα, for t > tmin :
α = -0.5, -1, -1.5
tmin = 20, 100 Myr (BNS) 
tmin =100, 500 Myr (BBH)

Short GRBs: log-normal distribution.
No time-delay.



    

Not a Continuous Background

• …at most frequencies.
Define duty cycle:

• Popcorn regime, or individual 
unidentifiable chirps.
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Example Spectra

• Spectrum peaks in the 
LIGO/Virgo band.

Dominated by the far-away 
contributions.

Excluding loudest nearby binaries 
does not change the spectrum 
significantly.
• Stochastic search pipeline 

would possibly reject the 
loudest CBC transients, but 
would integrate over all 
unidentifiable chirps.

44



    

Binary Neutron Stars
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0.4/yr

40/yr

400/yr

0.4/yr

40/yr

400/yr

1) aLIGO should see GW background corresponding to “realistic” coalescence rates.
2) Third generation detectors will see this as a “foreground”.
3) Star formation rate has little effect.



    

BBH & BHNS
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0.4/yr

20/yr

1000/yr
300/yr

10/yr

0.2/yr

Similar conclusions apply for BBH and BHNS systems.

Black Hole – Neutron StarBinary black holes



    

Time-Delay Distribution

47

Time-delay distribution (functional form and minimum 
delay) have no qualitative effect.



    

 Neutron stars can have a 
variety of instabilities: r-
modes, bar-modes etc.

 Integrating over the entire 
universe leads to a GW 
background.

» Owen et al, PRD 58, 084020 
(1998).

» Lai & Shapiro, ApJ 442, 259 
(1995).

» Regimbau & de Freitas 
Pacheco,, A&A 376, 381 (2001).
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Advanced Detectors and the 
Stochastic Background

Catalog of models: 
http://homepages.spa.umn.edu/~gwplotter/



    

 Magnetar model: 
protoneutron stars in very 
strong magnetic fields (1016 
G) can be distorted (high 
ellipticity).

 Integrating over the whole 
universe leads to a GW 
background.

» Cutler, PRD 66, 084025 (2002).
» Regimbau & Mandic, CQG 25, 

184018 (2008).
» Dall’Osso et al, MNRAS 398, 

1869 (2009).
» Marassi et al, MNRAS 411, 2549 

(2011).
49

Advanced Detectors and the 
Stochastic Background

Catalog of models: 
http://homepages.spa.umn.edu/~gwplotter/
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Parameter Estimation

 Perform a likelihood fit of the 
measured energy spectrum.

 Estimate model parameters and 
constrain the physics of the model.

 Example: constrain the rate of 
binary coalescences.

 Joint likelihood with the individual 
CBC observations (and others) to 
study the energy budget of the GW 
background. 

 Which sources dominate? Are we 
missing something?

LIGO S5

aLIGO

BNS BBH

VM, E. Thrane, S. Giampanis, T. Regimbau
 – in preparation



    

Conclusion

 GW observations are already 
yielding interesting astrophysical 
statements. 

 Next-generation detectors are 
around the corner (2014)!
» Expect first direct GW 

observations in the coming 5 
years!

 Follow-up detectors are already 
being planned to fully exploit the 
science potential of GW 
observations.

 Stay tuned...
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